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Abstract

The first two truncation error terms resulting from finite differencing the convection terms
in the two-dimensional Navier-Stokes equations are examined for the purpose of
constructing two-dimensional grid generation schemes. These schemes are constructed
such that the resulting grid distributions drive the error terms to zero. Two sets of
equations result, one for each error term, that show promise in generating grids that
provide more accurate flow solutions and possibly faster convergence. One set results in
an algebraic scheme that drives the first truncation term to zero, and the other a hyperbolic
scheme that drives the second term to zero. Also discussed is the possibility of using the
schemes in sequentially constructing a grid in an iterative algorithm involving the flow
solver. In essence, the process is envisioned to generate not only a flow field solution but
the grid as well, rendering the approach a ‘hands-off’method for grid generation.
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A Mathematical Basis
for Automated Structured Grid Generation

with Close Coupling to the Flow Solver

Introduction

The fact that grid generation and flow field calculations depend, or should depend, on each other
has driven efforts in grid adaptation, embedding, and patching methods to “loosely” couple the
flow field with the grid generation process. In this paper, an attempt is made to more tightly
couple the grid generation and flow solution process by deriving two sets of grid generation
equations from the first two convection truncation error terms in the discretized governing flow
equations. Consideration of the first truncation error term leads to an algebraic grid generation
scheme that is independent of the flow field. Manipulation of the second truncation error term
leads to a set of grid generation equations directly involving flow quantities. Both sets are
constructed such that the error terms are driven to zero. Benefits of such tight coupling and error
minimization may include the ability to compute more accurate solutions as well as possibly
faster convergence. Also, the resulting equations indicate the possibility that the grid and flow
field can develop simultaneously, thus automating the grid generation process. This may result in
less user interaction in the inherently complex and problematic process of grid generation.

A mathematical analysis on the two truncation error terms is presented below. Solution methods
are discussed. Sample algebraic grid solutions are presented. Work in progress to solve the
second set and form an automated grid generation algorithm is also discussed. Finally, a
summary of the analysis is given.

Discussion of Convection Truncation Error Terms

Two-dimensional convection terms in the Navier-Stokes equations may be written in transformed
computational space[1,2] as

1

J
U

f
V

f
ρ

∂

∂ξ
ρ

∂

∂η
+







where f can be either the u or v covariant velocity, ρ is the density, the Jacobian of the
transformation is given by

J x y y x= −ξ η ξ η

and U and V are the contravariant velocities

U uy vx= −η η
V vx uy= −ξ ξ  .

The independent variables ξ and η are the coordinate directions in computational space.

(1)

(2)

(3)

(4)
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The truncation errors for convection terms are arrived at by using second-order upwind
differencing for the convection terms and second-order central differencing for the metric
coefficients.[3,4] The total truncation error may be expressed as

Te u Tx v Ty TE TE= + = + +ρ ρ( ) ( ) 1 2  Higher Order Terms

where

TE J
Ux Vx fx Uy Vy fy1 2

= + + +

















ρ
ξξξ ηηη ξξξ ηηη

TE J
Ux x Vx x f

xx
U y x x y V y x x y f

xy2 = + + + + +
























ρ
ξ ξξ η ηη ξ ξξ ξ ξξ η ηη η ηη{

+ +



Uy y Vy y fyyξ ξξ η ηη } .

Note that grouping of terms is dependent on the order of the derivative ‘f’. For the present,
derivatives of  f are taken in physical space so that the equations may be written in a more
compact form. They will be transformed to computational space where necessary. Higher order
truncation error terms than these may be considered, but gaining useful information from them as
can be done with the above terms appears to be an extremely arduous task.

Lee and Tsuei[3] extensively analyze Eqs. 6-7 and show that

1.  TE1 does not contain terms representing the grid size and is of zero-order accuracy;
hence, if this error term is dominant, grid refinement will not ensure error reduction;
is zero for a uniform parallel grid

2.  TE2 may dominate if grid expansion ratios are much larger or much smaller than
unity, resulting in significant zero-order errors; is zero for a uniform parallel grid

3.  Truncation errors can be reduced if the velocity vector is aligned with one of the grid
lines; and

4.  Grid orthogonality does not guarantee that truncation error can be minimized.
 
The question arises as to whether one can arrive at equation sets that force TE1 and TE2  to be
identically zero throughout the solution process and which can be used to establish an
appropriate grid point distribution. In general, the terms will not be zeroed by the solution of the
flow field, for that is what is solved in the lower order terms. It will be shown below that such
equations may be derived and that such grid point distributions do exist. Also, it will be proposed
that the equations coupled to the flow solver may be used to construct the grid by iterating back
and forth between the flow solver and grid generation algorithms.

Grid Generation Equations Derived from the Convection Truncation Error Terms

This sections deals with the derivations of the grid generation equations. Discussed in Subsection
A are details associated with setting the first truncation error term to zero, i.e., TE1=0. The intent
of this section is to derive an algebraic grid system that is uncoupled to the flow solver and which
drives TE1 to zero. Simple two-dimensional examples are given to illustrate the results.

(5)

(6)

(7)
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Discussed in Subsection B are the grid generation equations associated with setting TE2=0. The
resulting equations are completely coupled to the flow solver through velocity gradients. They
are classified as 2nd-order, linear, hyperbolic, partial differential equations with variable
coefficients. An exact solution process is known and will be discussed, but the author has not yet
done the analysis.

The algebraic results derived next, and the system of partial differential equations derived in
Section B below, appear to form the basis of a procedure whereby the grids can be generated
simultaneously with the development of the flow field. This concept is discussed later and will
be the focus of future research.

A.    Derivation using TE1=0 equation

Grid generation equations derived by setting TE1=0 begins by setting the coefficients of fx and fy
to zero independently in Eq. 6. The resulting equations are

Ux Vxξξξ ηηη+ = 0

Uy Vyξξξ ηηη+ = 0 .

If a satisfactory distribution in x and y can be constructed that satisfies the above equations, TE1

will be zero. Rewriting the equations in matrix form yields

x x

y y

U

V
ξξξ ηηη

ξξξ ηηη




























=
0

0

from which a non-trivial solution can be obtained only if the determinant of the matrix is zero,
i.e.,

x y x yξξξ ηηη ηηη ξξξ− = 0.

The matrix elements must be determined or specified. With four unknowns and two equations,
two of the matrix elements must be specified unless all terms are set to zero. For example only,
consider grid distributions that can be constructed such that xξξξ  and xηηη are zero, thus satisfying
Eq. 11. In this case,  yηηη  would be determined by Eq. 9 with yξξξ  specified, or vice versa. This
would render part of the analysis closely coupled to the flow solver (a more sophisticated
coupling will be presented in Subsection B).  The equations governing grid generation would
then be

0== ηηηξξξ xx

and

ξξξηηη y
V

U
y −= .

(8)

(9)

(10)

(11)

(12)

(13)
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Details and problems of implementing these equations during the flow solver computation will
not be discussed here. The approach taken in this section, consistent with the goal of deriving an
algebraic set of equations, is to set all grid derivatives to zero, viz.,

x x y yξξξ ηηη ξξξ ηηη
= = = = 0.

Integration of  xξξξ  leads to the generic form of the solution in ξ as

( ) ( )( ) ( )( ) ( )x
F

F F
1

1 1
2

2 2 1 3ξ η
η ξ

η ξ η, =
−

+ − +

where F1(η), F2(η), and F3(η) are functions of η only. Note that the quantity (ξ-1) is used in
place of ξ with no loss in generality. Integrating xηηη leads to the generic form in η as

( ) ( )( ) ( )( ) ( )x
G

G G
2

1 1
2

2 2 1 3ξ η
ξ η

ξ η ξ, =
−

+ − + .

Table 1. Grid boundary conditions.
Computational Coordinates Physical Coordinates

At ξ=1, 1≤η≤KMAX: x=x L(η), y=yL(η)
At ξ=JMAX, 1≤η≤KMAX: x=x R(η), y=yR(η)
At η=1, 1≤ξ≤JMAX: x=xB(ξ), y=yB(ξ)
At η=KMAX, 1≤ξ≤JMAX: x=xT(ξ), y=yT(ξ)
At η=1, 1≤ξ≤JMAX:

(Condition of orthogonality
imposed at the Bottom boundary;
first grid point spacing ∆S
specified by user; could also be
imposed at the Top boundary with
slight modifications)

( ) ( )
∂

∂η

x S yB

xB yB

=
− ⋅

+





∆ '

' '
/2 2 1 2 ;   

( ) ( )
∂

∂η

y S xB
'

xB
' yB

'
/=

⋅

+





∆

2 2 1 2

At ξ=1, 1≤η≤KMAX:

(Condition of orthogonality
imposed at the Left boundary; first
grid point spacing ∆N specified by
user; could also be imposed at the
Right boundary with slight
modifications )

OR

At ξ = ξM, 1≤η≤KMAX,
where 1<ξM<JMAX

(Specified interior line; analysis
not shown)

( ) ( )
∂

∂ξ

x N yL

xL yL

=
⋅

+





∆ '

' '
/2 2 1 2 ;   

( ) ( )
∂

∂ξ

y N xL
'

xL
' yL

'
/=

− ⋅

+





∆

2 2 1 2

x=xM(ξM), y=yM(ξM)

(15)

(16)

(14)
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Eqs. 15 and 16 respectively represent a family of η and ξ curves. Each family has three
‘constants’ of integration, all of which can be determined from the boundary conditions listed in
Table 1 for an arbitrary grid.

The subscripts L, R, B, and T for x and y correspond to the Left, Right, Bottom, and Top of the
grid as shown in Fig. 1. Indices (ξ ,η)=(1, 1) correspond to the point at which the Left and

Bottom grid boundaries meet. Also note that ( )xB dxB d' /≡ ξ ξ , ( )yB dyB d' /≡ ξ ξ , etc. The

terms ∆Sand ∆N specify the distance of the first grid point spacing off either the bottom or left
boundary, respectively. Evaluating the constants in Eqs. 15 and 16 with these generic boundary
conditions leads to the equations

( ) ( ) ( )x
JMAX

xR JMAX
xL1

1

1

2

1
1

1

2

ξ η
ξ

η
ξ

η, =
−

−
+ −

−

−
























( ) ( )
( )+

⋅

+

− −
−

−





















∆N y
L

x
L

y
L

JMAX

'

' '
/2 2 1 2

1 1
1

1
ξ

ξ

( ) ( ) ( ) ( ) ( )
( ) ( )

≡ ⋅ + ⋅ + ⋅
⋅

+





Ω Ω Ω
∆

1 2 3 2 2 1 2ξ η ξ η ξxR xL

N yL

xL yL

'

' '
/

and

( ) ( ) ( )x
KMAX

xT KMAX
xB2

1

1

2

1
1

1

2

ξ η
η

ξ
η

ξ, =
−

−
+ −

−

−
























( ) ( )
( )−

⋅

+

− −
−

−





















∆S y
B

x
B

y
B

KMAX

'

' '
/2 2 1 2

1 1
1

1
η

η

( ) ( ) ( ) ( ) ( )
( ) ( )

≡ ⋅ + ⋅ + ⋅
− ⋅

+





Γ Γ Γ
∆

1 2 3 2 2 1 2η ξ η ξ ηxT xB

S yB

xB yB

'

' '
/

where Ω1 , Γ1 , etc., are the coefficients of ( )xR η , ( )xT ξ , etc., respectively.

The family of curves represented by Eqs. 17 and 18 can be combined to interpolate the entire
region and form a computational mesh. The two equations are combined using Boolean Sum
projectors.[5] The final equation is given by

( ) ( ) ( )ηξηξηξ ,,, 21 xxx +=

(18)

(17)

( ) ( ) ( ) ( )




























































−

−
−−+

−

−
+

−

−
−

−

−
−− 1'

1

1
11

2

1

1
1

2

1

1
1

2

1

1
1 Bx

JMAX
JMAXBx

JMAXBx
JMAXKMAX

ξ
ξ

ξξη



11

( ) ( ) ( ) ( )
















































−

−
−−+

−

−
+

−

−
−

−
−

− 1'

1

1
11

2

1

1
1

2

1

1
1

2

1

1
TT x

JMAX
JMAX

T
x

JMAX
x

JMAXKMAX

ξ
ξ

ξξη

Likewise, the analysis for y leads to the equations

( ) ( ) ( )y
JMAX

yR JMAX
yL1

1

1

2

1
1

1

2

ξ η
ξ

η
ξ

η, =
−

−
+ −

−

−
























( ) ( )
( ) 



















 −

−
−−

+

⋅∆−
+

1

1
11

2/1
2'2'

'

JMAX

L
y

L
x

L
xN ξ

ξ

( ) ( ) ( ) ( )
( ) ( ) 2/1

2'2'

'

321









+

⋅∆−
⋅Φ+⋅Φ+⋅Φ≡

L
y

L
x

L
xN

LxRx ηξηξ

and

( ) ( ) ( )ξ
η

ξ
η

ηξ By
KMAXTy

KMAX
y

























−

−
−+

−

−
=

2

1

1
1

2

1

1
,

2

( ) ( )
( ) 



















 −

−
−−

+

⋅∆
+

1

1
11

2/1
2'2'

'

KMAX

B
y

B
x

B
xS η

η

( ) ( ) ( ) ( ) ( )≡ ⋅ + ⋅ +Λ Λ Λ1 2 3η ξ η ξ ηyT yB

where Φ1  , Λ1  , etc., are the coefficients of ( )yR η , ( )yT ξ , etc., respectively. Combining Eqs.

20 and 21 using Boolean Sum projectors yields

(20)

(21)

( ) 












−
−

−−−
1

11
KMAX

η
η

( ) ( ) ( ) .

1
1

1
11'

2

1

1
1'

2

1

1
1






















































==
∂

∂

∂
∂

−

−
−−+

−

−
+

−

−
−•

ηξ
ξη

ξ
ξ

ξξ L
x

JMAX
JMAX

R
x

JMAXL
x

JMAX

(19)
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( ) ( ) ( )ηξηξηξ ,2,1, yyy +=

( ) ( ) ( ) ( )
















































−

−
−−+

−

−
+

−

−
−

−
−

− 1'

1

1
11

2

1

1
1

2

1

1
1

2

1

1
TT y

JMAX
JMAX

T
y

JMAX
y

JMAXKMAX

ξ
ξ

ξξη

The above grid distribution ensures TE1=0 will be maintained. Some examples of grids generated
using the above equations are presented in Figs. 2-3. The purpose in presenting the grids is to
illustrate that intuitively reasonable grids can be constructed from the error analysis. These grids
are neither coupled to the flow solver nor have they been run through a flow solver to investigate
their effects on the solution process.

B.     Derivation using TE2=0 equation

The approach used to derive the desired equations from setting TE2=0 is similar to that used for
TE1=0, above. However, the analysis is significantly more complicated since TE2 contains more
derivatives and a cross-derivative term. The focus of the derivation will be to arrive at equations
for a grid distribution that are dependent on the flow solution, hence coupling the flow solver
with the grid generation process.

The analysis begins by setting Eq. 7 to zero. The equation is then rearranged to have factors that
multiply the contravariant velocity terms U and V. This yields

U x x fxx y x x y fxy y y fyyξ ξξ ξ ξξ ξ ξξ ξ ξξ+ + +











( )[ ]+ + + + =V x x fxx y x x y fxy y y fyyη ηη η ηη η ηη η ηη 0

Setting the coefficients of U and V to zero and rearranging gives

x fxx y fxy x x fxy y f yy yξ ξ ξξ ξ ξ ξξ+ + + =









 0 .

and

( ) ( )x fxx y fxy x x fxy y fyy yη η ηη η η ηη+ + + = 0 .

(23)

(24)

(25)

(22)

( ) ( ) ( ) ( )



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−

−
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∂
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Working for the moment with Eq. 24, we again set the coefficients to zero which gives the two
equations

x fxx y fxyξ ξ+ = 0

and
x fxy y f yyξ ξ+ = 0 .

Multiplying Eq. 26 by xξ , Eq. 27 by yξ  , and subtracting removes the cross-derivative term. The
result is

x fxx y f yyξ ξ
2 2 0− = .

The analogous result for Eq. 25 is

x fxx y f yyη η
2 2 0− = .

In matrix form, the equations are written as

x y

x y

f

f
xx

yy

ξ ξ

η η

2 2

2 2

0

0

−
−



















=








.

A non-trivial solution is arrived at by setting the determinant of the matrix to zero. This yields

x y x y x y x y x y x y x y x y Jξ η η ξ ξ η η ξ ξ η η ξ ξ η η ξ
2 2 2 2 0− = + − = + =

















where the Jacobian J is given by Eq. 2. This equation bears close attention. Since it represents
the grid cell area, the Jacobian of the transformation J cannot be zero. This leaves the coefficient
of the Jacobian to be zero. It is instructive to compare this coefficient with the equation for the
Jacobian, Eq. 2, and the well-known condition for orthogonality of grid lines, ∇ξ•∇η=0, in the
following table.

Table 2. Comparison of well-known relations with ‘Mystery
Equation.’

Transformation Jacobian, Eq. 2: x y x yξ η η ξ− ≠ 0

Condition of Orthogonality: x x y yξ η ξ η+ = 0

Mystery Equation, Eq. 31: x y x yξ η η ξ+ = 0

Eq. 31 is listed as the ‘Mystery Equation’ since the author does not, at this time, understand its
physical significance. However, this equation in its biquadratic form given in Eq. 31 is crucial to
the analysis that follows. Without this equation, it is doubtful whether a grid distribution
dependent on the flow solution could be arrived at that satisfies TE2=0.

Since Eqs. 28 and 29 were used to arrive at Eq. 31, the proper set of equations to be solved
involves one of Eqs. 28 or 29, and Eq. 31. Attention is now focused on Eq. 28. The equation is
valid for f=u or f=v, and both values are used below, along with Eq. 31. Setting f=u,
transforming the f derivatives to the computational (ξ,η) plane, and regrouping terms as
coefficients of the second derivative metrics result in the equation

(26)

(27)

(28)

(29)

(31)

(30)
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[ ] [ ] [ ] [ ] [ ] [ ]A x B x C x D y E y F y RHS1 1 1 1 1 1 1ξξ ξη ηη ξξ ξη ηη+ + + + + =

where the terms in brackets are shown in detail in the Appendix. It is also shown in the Appendix
that, with the help of Eq. 31 (the ‘Mystery Equation’), every bracketed term in Eq. 32 is zero
except for those multiplying the cross-derivatives xξη  and yξη , and the right hand side term. The
term RHS1 is also greatly simplified with the help of the Mystery Equation. The resultant
equation is

uxx uy y uξη ξη ξη+ =

and the corresponding result for f=v is

vxx vy y vξη ξη ξη+ =

These two equations allow us to solve for xξη  and yξη . Hence

x x xξη ξ η= +Ψ Ψ1 2

y y yξη ξ η= +Ψ Ψ1 2

where the velocity derivatives have been expressed in computational space and the coefficients
represented by ψ are given by

Ψ1 =
−

−

v u u v

v u u v

η ξη η ξη

η ξ η ξ

Ψ2 =
−

−

u v v u

v u u v

ξ ξη ξ ξη

η ξ η ξ
.

The cross-derivative terms that appear in Eqs. 35 and 36 can be a nuisance to constructing stable
finite difference algorithms. This is due to their necessarily ‘wide’ stencil which degrades
diagonal dominance for implicit schemes.[6] For an interesting discussion on how cross-
derivatives affect weather prediction, for example, and the methods used to circumvent problems,
confer Ames.[7]

In the author’s estimation, the reduction in terms, and in complexity, from Eq. 32 to that of Eqs.
35 and 36 is surprising. Just as surprising is the fact that the resultant equations have an exact
solution form.[8] The solution is non-trivial and is being studied by the author. Finite difference
methods are also being examined. Due to time constraints, the author has not developed either of
these avenues.

Proposed Method for an Automated Tightly-Coupled Flow-Solver/Grid-Generator

(32)

(33)

(34)

(35)

(36)

(37)

(38)
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It was stated in the introduction that one of the objectives of this report is to describe an
algorithm for automated grid generation. Convection truncation error analyses have provided
equations that can be used to develop such an algorithm. One set of equations for constructing
grids is uncoupled from the flow solver; the other set, coupled. This permits an initial grid to be
generated that ensures the leading convection truncation error term is zero. The initial grid is
assumed to be of minimal construction and rather arbitrarily placed, with say five grid points off
the wall. Once a flow solver has been run on the initial grid for several time steps and possibly
some prominent features of the flow have begun to emerge, the non-converged solution can be
fed into the coupled grid generation equations to more intelligently redistribute the grid points
and possibly enhance flow field convergence[9]. This redistribution ensures the second leading
truncation error term to be zero. A layer of grid points is then added to the previous outer layer of
grid points, the process of which is discussed below. The algorithm then iterates between the
flow solver and the grid construction until the flow solver indicates convergence and no more
outer-layer grid points need be added.

The process of intelligently adding more grid points to the previous grid’s outer layer is the
method by which the grid is constructed, or built up. This allows the user to begin the flow
solution with nothing more than the surface grid describing the geometry about which the flow
field is to be calculated, and an initial coarse grid rather arbitrarily constructed with the use of
algebraic methods such as those given by Eqs. 19 and 22.  The equations used to construct, or
add, the new outer layer are given by Eqs. 35 and 36. These equations are hyperbolic. A proper
finite difference stencil allows the equations to predict a grid level, i.e. the new outer level, above
those points at which the velocities and their gradients have been determined from the previous
iteration. Development of this process appears to be straightforward.

Caveats abound in the development of any new method, and this method is no exception. One
caveat is particularly noteworthy. If it is desired to use the approach presented herein to construct
entirely algebraic grids for viscous dominated problems, the user will find it futile to use Eqs. 19
and 22. A quick glance at Eq. 17 will show why. It is likely that the first term after the equal sign
will dominate the third term involving the user-specified spacing. This implies that the wall
spacing as specified by the user may be very different than what actually occurs in the final grid.
This should not be surprising, however, since the grid generation equations were derived from
the convection error terms, not the diffusive terms dominant in the near-wall region. To counter
this, one may consider using a highly clustered point distribution, such as arc-length blended
transfinite interpolation, in the near-wall, viscous dominated region. This grid would then be
matched at appropriate points with an algebraic grid generated using the methods presented
herein. An alternative approach may be to derive a grid generation scheme based on the diffusive
truncation error terms whose grid point distribution could then be blended with the equations
presented above. The author has not examined the feasibility of either approach.
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Summary

A mathematical basis has been presented for automated grid construction that is tightly coupled
to the flow solver. The method is derived from equations whose solutions drive the first two
leading convection truncation error terms to zero. An algorithm is also discussed whereby the
equations may be used to automate grid construction that is tightly coupled with the flow solver.
It is envisioned that nothing is specified about the grid being generated by the coupled flow
solver other than the user-generated surface grid. Hence, the number of points as well as their
distribution is not pre-determined. This approach differs substantially from the multi-grid or
adaptive methods in that the grid is ‘grown’ in increments away from the relevant geometry. Grid
points are added, and old points relocated, by utilizing feedback from the flow solver on the
previously constructed, coarser grid.

The approach described above is novel, and it is unknown to the author if other researchers have
attempted such a risky venture. However, if successful, the proposed algorithm will be extremely
significant to computational algorithms for solving discretized governing equations. Many details
need to be worked through, including the development of the approach in three dimensions, the
effect of various flow solver differencing schemes on the form of the grid generation equations,
and exactly how grids that drive truncation error terms to zero affect the flow solver’s
convergence rates and solution accuracy. Though much work remains to be done, the foundation
of the analysis appears strong. The author hopes to soon have some practical applications and
demonstrations of the power of the method.



17

References

1. K. A. Hoffman and S. T. Chiang, Computational Fluid dynamics for Engineers, Vols. I and
II, Engineering Education System, Kansas, 1993.

2. D. A. Anderson, J. C. Tannehill,  and R. H. Pletcher, Computational Fluid Mechanics and
Heat Transfer, Hemisphere Publishing Corporation, New York, 1984, especially Ch. 10.

3. D. Lee and Y. M. Tsuei, “A Formula for Estimation of Truncation Errors of Convection
Terms in a Curvilinear Coordinate System,” Journal of Computational Physics 98, pp. 90-
100, 1992.

4. J. F. Thompson, Z. U. A. Warsi, and C. W. Mastin, Numerical Grid Generation, Foundations
and Application, Elsevier Science Publishing Company, New York, 1985 (Chap. 5).

5. P. Knupp and S. Steinberg, Fundamentals of Grid Generation, CRC Press, Florida, 1997, pp.
92-94.

6. J. H. Ferziger and M. Peric, Computational Methods for Fluid Dynamics, Springer, New
York, 1996, p. 213.

7. W. F. Ames, Numerical Methods for Partial Differential Equations, 2nd edition, Academic
Press, New York, 1977.

8. C. R. Chester, Techniques in Partial Differential Equations, McGraw-Hill, New York, 1971,
pp. 222-229.

9. Private discussions with Dr. John A. Benek, Micro Craft, Tullahoma, Tennessee.
10. D. W. Barnette, “A User’s Guide for BREAKUP: A Computer Code for Parallelizing the

Overset Grid Approach,” SAND98-0701, Sandia National Laboratories, Albuquerque, New
Mexico, April 1998.



18

ξ

η

xL(η), yL(η)

xR(η), yR(η)

xB(ξ), yB(ξ)
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Figure 1. Uniform grid in computational space illustrating nomenclature for defining
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Figure 2. Example of a clustered algebraic grid between two concentric
circles with radial grid lines normal to the inner circle.

b) close-up

a) entire grid



20

(2D)  08 Oct 1997 

-5 -4 -3 -2 -1 0 1 2 3 4 5
X

-1

0

1

2

3

4

5

6

7

Y

SQUARE IN A CIRCLE

Grid Size: 21 x 21
Wall spacing: 1%

D. W. Barnette
Sandia Nat’l Labs

(2D)  08 Oct 1997 

(2D)  08 Oct 1997 

-1 0 1
X

0

1

2

Y

SQUARE IN A CIRCLE

Grid Size: 21 x 21
Wall spacing: 1%

D. W. Barnette
Sandia Nat’l Labs

(close-up)

(2D)  08 Oct 1997 

Figure 3. Example of a clustered algebraic grid between a half-square and a semi-
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Appendix

 Derivation of Governing Grid Equations for TE2=0

Recall Eq. 28, repeated here for convenience as

x fxx y f yyξ ξ
2 2 0− = .

Let f=u. Upon transforming fxx and fyy to computational space, Eq. A.1 becomes

x y x y x y u y u y u y u yξ η ξ η η ξ ξξ η ξ ξη ξη ξ η ξξ
2{ [ − + − −










− − + − −








u y u y x y x y x y x yξ η η ξ ξ ξη ξξ η η ξξ ξη ξ ]

− − + − −








y x y x y u y u y u y u yξ ξ η η ξ ξη η ξ ηη ηη ξ η ξη[

− − + − −








u y u y x y x y x y x yξ η η ξ ξ ηη ξη η η ξη ηη ξ ]}

− − − + − −








y x x y x y u x u x u x u xξ η ξ η η ξ η ξξ ξη ξ ξξ η ξ ξη

2{ [

+ − + − −








u x u x x y x y x y x yξ η η ξ ξ ξη ξξ η η ξξ ξη ξ ]

+ − + − −








x x y x y u x u x u x u xξ ξ η η ξ ηη ξ η ξη ξη η ξ ηη[

+ − + − − =








u x u x x y x y x y x yξ η η ξ ξ ηη ξη η η ξη ηη ξ ]} 0 .

This equation is regrouped in terms of coefficients of the second derivative metrics which gives

[ ] [ ] [ ] [ ] [ ] [ ]A x B x C x D y E y F y RHS1 1 1 1 1 1 1ξξ ξη ηη ξξ ξη ηη+ + + + + =

where

A x y u y u y y x x y x y u y x y u x u x1
2 2 2 2= − − + − + −















ξ η ξ η η ξ ξ η ξ η η ξ η ξ η η ξ η η ξ

      = − + + + − −









u x y y y x y u x y y y x x y y x y x x yξ ξ η η ξ η η η ξ η ξ ξ η ξ η ξ η ξ η ξ η

2 2 2 2 2 2 2 3 2 2

      = − + + −










u y x y y x u y x y y x

ξ η ξ η ξ η η ξ ξ η ξ η
2 2 2 2 2 2 2 2

      = 0    (via Eq. 31)

(A.1)

(A.2)

(A.3)

(A.4)
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B x y y u y u y x y y u y u y y x x y x y u1
2 2 2= − + − − −















ξ η ξ ξ η η ξ ξ ξ η ξ η η ξ ξ η ξ η η ξ ξ

− − − − − −















y x u x u x y x x y x y u y x y u x u x

ξ η ξ η η ξ ξ ξ ξ η η ξ η ξ ξ η ξ η η ξ
3 2 2

      = − − −









u x y y y x x y u x y y y x xξ ξ η ξ ξ ξ η η η ξ ξ η ξ ξ η2 2 2 2 2 2 2 2 2 3

      = − − −









2 2 2u x y y x y y x u y x x y y xξ ξ ξ η ξ η ξ η η ξ ξ ξ η ξ η

      = −



2Jx y u y u yξ ξ ξ η η ξ

C x y u y u y y x x y x y u y x u x u x1
2 2 2 3= − − + − + −















ξ ξ ξ η η ξ ξ ξ ξ η η ξ ξ ξ ξ ξ η η ξ

      = − + − + − +









u x y y x u x y y y x y y x x y x xη ξ ξ ξ ξ ξ ξ ξ η ξ ξ η ξ ξ η ξ ξ η

2 3 3 2 2 2 2 2 3 3

       = 0   identically

D x y x y x y u x y x u y u y y x u x u x1
2 2 2 2= − − + − − −















ξ η ξ η η ξ η ξ η η ξ η η ξ ξ η ξ η η ξ

      = − + − + + −









u x y x y x y x y x y y x x u x y x y xη ξ η ξ η η ξ ξ η η ξ ξ η ξ ξ ξ η η ξ η

3 2 2 2 2 2 2 2 2 3

      = − + + −









u x x y y x u x x y y x

η ξ ξ η ξ η ξ η ξ η ξ η
2 2 2 2 2 2 2 2

      = 0    (via Eq. 31)

E x y x y x y u x y u y u y x y x y x y u1
2 3 2= − − − + −















ξ η ξ η η ξ ξ ξ η ξ η η ξ ξ ξ ξ η η ξ η

(A.5)

(A.6)

(A.7)
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− − + − + −















x y x u y u y y x x u x u x y x x u x u xξ ξ η ξ η η ξ ξ η ξ ξ η η ξ ξ ξ η ξ η η ξ

2 2 2

      = − + + −









u x x y y x y x u x y y x y xξ ξ η ξ η η ξ ξ η ξ ξ η ξ ξ η2 2 2 2 2 2 2 2 2 2

      = − − + −









2 2 2u x x y x y x y u x y x y x yξ ξ η ξ ξ η η ξ η ξ ξ ξ η η ξ

      = −



2Jx y u x u xξ ξ η ξ ξ η

F x y x y x y u x y u y u y x y u x u x1
2 3 2 2= − − + − − −















ξ ξ ξ η η ξ ξ ξ ξ ξ η η ξ ξ ξ ξ η η ξ

     = − + + − + − +









u x y y x y x x y y x y x u x y x yξ ξ ξ η ξ ξ η ξ ξ η ξ ξ η η ξ ξ ξ ξ

3 2 2 3 2 2 3 2 3 2

      = 0   (identically)

and

RHS x y x y x y u x y y x y x y u x y y x y x y u1
2 2 2 2= − − + − + −















ξ ξ ξ η η ξ ξξ ξ η ξ ξ η η ξ ξη ξ ξ η ξ η η ξ ξη

− − + − − −















x y x y xy u y x x y x y u y x x x y x y uξ ξ ξ η ηη ξ η ξ η η ξ ξξ ξ η ξ ξ η η ξ ξη

2 2 2 2 2

− − + −









y x x x y x y u y x x y x y uξ ξ η ξ η η ξ ξη ξ ξ ξ η η ξ ηη

2 2 2

            = − − + − −



















u x y x y x y x y u x y x y x y x yξξ ξ η η ξ η ξ ξ η ηη ξ η η ξ ξ ξ ξ ξ

2 2 2 2 2 2 2 2

                   + − + − −








u x y x y x y y x y y y x x y x xξη ξ η η ξ ξ η ξ ξ ξ η ξ ξ η ξ ξ η

2 2 2 2

            = − −








2 2 2u x y x y x y y y x xξη ξ η η ξ ξ ξ η ξ ξ η

            = −



2

2
x y x y x y uξ η η ξ ξ ξ ξη

(A.8)

(A.9)
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            = 2 2J x y uξ ξ ξη   .

Substitution of the values for the coefficients into Eq. A.3 results in

2 2 2 2Jx y u y u y x Jx y u x u x y J x y uξ ξ ξ η η ξ ξη ξ ξ η ξ ξ η ξη ξ ξ ξη− + − =











or

u y u y x u x u x y Juξ η η ξ ξη η ξ ξ η ξη ξη− + − =









 .

This equation can be written in a more compact notation by writing the terms in parentheses in
physical rather than computational space. Recall the equations for the two-dimensional
transformation metrics[1,2]

ξ
η

x
y

J
=       ξ

η
y

x

J
= −     η

ξ
x

y

J
= −     η

ξ
y

x

J
=  .

Then

Jux J u x u x J
u y u y

J
u y u y= + =

−
= −















ξξ ηη

ξ η η ξ
ξ η η ξ

and

Juy J u y u y J
u x u x

J
u x u y= + =

− +
= −















ξξ ηη

ξ η η ξ
η ξ ξ η .

This allows Eq. A.12 to be written as

uxx uy y uξη ξη ηξ+ = .

The analogous result for Eq. A.1 with f=v may be written as

vxx vy y vξη ξη ξη+ = .

The last two equations may be written in matrix form as

(A.10)

(A.11)

(A.12)

(A.13)

(A.14)

(A.15)

(A.16)

(A.17)
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ux uy
vx vy

x

y

u

v

































=

ξη

ξη

ξη

ξη
.

If the determinant of the matrix is non-zero, we may solve for the metric derivatives and obtain

x
vyu uyv

vyux vxuy
ξη

ξη ξη
=

−

−

and

y
uxv vxu

vyux vxuy
ξη

ξη ξη
=

−

−
.

Transforming the velocity derivatives back into computational space, one may write the above
equations as

x J

v x v x u u x u x v

v x v x u y u y v y v y u x u x
ξη

η ξ ξ η ξη η ξ ξ η ξη

η ξ ξ η ξ η η ξ ξ η η ξ η ξ ξ η

=
− − −

− − − − −



































.

Multiplying and collecting terms, the denominator becomes

v x v x u y u y v y v y u x u xη ξ ξ η ξ η η ξ ξ η η ξ η ξ ξ η− − − − −





















( )= − + − + − + −















v u x y x y v u x y x y v u x y x y v u x y y xη ξ ξ η η ξ ξ ξ η η η η η η ξ ξ ξ ξ ξ η η ξ η ξ

        = −



J v u v uη ξ ξ η .

Eqs. A.19 and A.20 may now be written in their final form as

x
v u u v

v u u v
x

u v v u

v u u v
xξη

η ξη η ξη

η ξ η ξ
ξ

ξ ξη ξ ξη

η ξ η ξ
η=

−

−
+

−

−

























and

y
v u u v

v u u v
y

u v v u

v u u v
yξη

η ξη η ξη

η ξ η ξ
ξ

ξ ξη ξ ξη

η ξ η ξ
η=

−

−
+

−

−























 .

These are identical to Eqs. 37 and 38 in the text.

(A.19)

(A.20)

(A.21)

(A.22)

(A.23)

(A.24)

(A.18)
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